Cerebellar fastigial nucleus influence on ipsilateral abducens activity during saccades.
نویسندگان
چکیده
To characterize the cerebellar influence on neurons in the abducens (ABD) nucleus, we recorded ABD neurons before and after we inactivated the caudal part of the ipsilateral cerebellar fastigial nucleus (cFN) with muscimol injection. cFN activity influences the horizontal component of saccades. cFN inactivation increased the activity of most ipsilateral ABD neurons (19/22 in 2 monkeys) during ipsiversive (hypermetric) saccades, primarily by increasing burst duration. During contraversive (hypometric) saccades, the off-direction pause of most (10/15) ABD neurons was shorter than normal because of the early resumption of ABD activity. Early ABD firing caused the early contraction of antagonist muscles that reduced eye rotation and made contraversive saccades hypometric. Thus the cerebellum controls ipsilateral ABD activity by truncating on-direction bursts during ipsiversive saccades and extending off-direction pauses during contraversive saccades. We conclude that cFN output keeps saccades accurate by controlling when ABD on-direction bursts and off-direction pauses end.
منابع مشابه
Saccade dysmetria during functional perturbation of the caudal fastigial nucleus in the monkey.
The caudal fastigial nucleus (cFN) is the output nucleus by which the medioposterior cerebellum influences the brainstem saccade generator. In the monkey, inactivation of one cFN by local injection of muscimol impairs all saccades: ipsiversive saccades become hypermetric, contraversive saccades become hypometric, and saccades aimed at a target located in the upper or lower visual fields are bia...
متن کاملCerebellar control of saccade dynamics: contribution of the fastigial oculomotor region.
The fastigial oculomotor region is the output by which the medioposterior cerebellum influences the generation of saccades. Recent inactivation studies reported observations suggesting an involvement in their dynamics (velocity and duration). In this work, we tested this hypothesis in the head-restrained monkey with the electrical microstimulation technique. More specifically, we studied the in...
متن کاملConvergent synaptic inputs from the caudal fastigial nucleus and the superior colliculus onto pontine and pontomedullary reticulospinal neurons.
The caudal fastigial nucleus (FN) is known to be related to the control of eye movements and projects mainly to the contralateral reticular nuclei where excitatory and inhibitory burst neurons for saccades exist [the caudal portion of the nucleus reticularis pontis caudalis (NRPc), and the rostral portion of the nucleus reticularis gigantocellularis (NRG) respectively]. However, the exact retic...
متن کاملThe role of the cerebellum in voluntary eye movements.
In general the cerebellum is crucial for the control but not the initiation of movement. Voluntary eye movements are particularly useful for investigating the specific mechanisms underlying cerebellar control because they are precise and their brain-stem circuitry is already well understood. Here we describe single-unit and inactivation data showing that the posterior vermis and the caudal fast...
متن کاملSaccadic burst neurons in the fastigial nucleus are not involved in compensating for orbital nonlinearities.
1. To test whether the cerebellum is involved in compensating for orbital nonlinearities, we recorded discharges of saccadic burst neurons in the fastigial oculomotor region (FOR) during both centrifugal and centripetal saccades in two trained macaque monkeys. 2. We also investigated the metrics of centrifugal and centripetal saccades with the same amplitude while output signals from the fastig...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of neurophysiology
دوره 111 8 شماره
صفحات -
تاریخ انتشار 2014